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• Mars surface operations requires knowledge of latest 
rover state to inform planning for the next Martian day (sol)

• Timely and routine data return is critical for nominal rover 
operations

• Data needed to enable next sol planning is “decisional”
• Critical science activities are scheduled between uplink of 

rover commands and decisional downlink pass
• Mars Science Laboratory (MSL) relies on Mars Relay 

Network orbiters to achieve downlink timeliness and 
throughput required for operations

• Relay opportunities and performance are tightly coupled to 
MSL operations efficiency and science return

Background
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• Earth-Mars phasing results a daily ~40 minute shift of downlink and uplink 
windows relative to Earth time

• Time between receipt of latest rover telemetry and deadline to radiate planned 
commands and sequences bounds the planning timeline

• MSL planning occurs between 06:00 to 19:30 PT in order to maintain 
sustainable operations (human factors)

• Operations efficiency* is the ratio between the number of unrestricted or 
“nominal” planning days to the number of Martian days (sols)

• Greater operations efficiency yields more interaction with rover by operations 
team and therefore more science

Sharon Laubach, “Calculation of Operations Efficiency Factors for Mars Surface Missions”

Planning Timeline
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Planning Timeline
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• MSL’s primary relay assets were sun-
synchronous orbiters Mars Odyssey (ODY) 
and Mars Reconaissance Orbiter (MRO)
• Overflight timing was temporally consistent 
• Overflights did not interfere with critical science
• Overflights did not interfere with each other

• Time between uplink window and decisional 
pass is the Critical Science Path (CSP)

• Initial MSL mission design relied on these 
factors to ensure sufficient decisional data 
return for next sol planning

• Consistency lent itself to simple relay planning
• All usable overflights were scheduled for relay

Previous Relay Planning Paradigm
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• InSight arrived at Mars in November 2018 in close proximity (600km) to MSL 
• Overflights must now be distributed between the two missions, resulting in fewer relay 

opportunities for MSL
• MSL and InSight missions came to an agreement on the allocation of orbiters and 

overflights 
• Dependent on InSight’s operations timeline during deployment phase and MSL’s decisional data 

needs post-deployment 
• Integration of Mars Atmosphere and Volatile Evolution (MAVEN) and Trace Gas Orbiter 

(TGO) orbiters as nominal relay assets help alleviate the impact of reduced 
relay/downlink, but not without introducing additional challenges

• Two landers in close proximity also introduced the need to consider interference 
(“crosstalk”) as well as the potential to split single overflight opportunities

InSight’s Arrival at Mars
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• Both orbiters exercise great relay performance and increase overall data return
• MAVEN and TGO occupy non-sun-synchronous orbits that precess

• Overflight timing is not temporally consistent but “walks” sol-to-sol
• This also exacerbates crosstalk concerns 

• Usability is directly affected as overflight timing shifts and either is too early (conflicts 
with CSP) or becomes too late to be used decisionally

• MAVEN also occupies a highly elliptical orbit (apoapsis: ~6,000km)
• View periods range from ~10 minutes to 2-3 hours (max. overflight duration is 30 min.)
• Data return varies widely seasonally

• MAVEN is significantly impacted by atmospheric drag (periapsis: ~150km) 
• Data return predictions are impacted as planned overflight geometries shift

Benefits and Challenges of MAVEN and TGO Relay
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• New paradigm requires deconflicting and 
down-selecting from available overflights

• How do we choose the “best” overflight? 
How do we maintain operational efficiency?

• Overflight selection criteria was established 
based on the following key metrics:
• Data return
• Latency (data arrival timeliness)
• Local Mean Solar Time (LMST)

• Initial focus on decisional and total data 
return

Redesigning Relay Planning
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• MAVEN view periods are >30 minutes in duration
• 30 minutes is the maximum allowable overflight duration (thermal constraints)
• To allow selection of the “best” 30 minutes of a MAVEN view period, individual 30 

minute segments are created and assessed individually

Implementation of MAVEN Sliding Windows

MAVEN

1min 30min
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• Vehicle Health & Safety / Mission Robustness
• Anomaly Recovery
• Mission Efficiency/Return
• Special Cases

*New effort in 2019 not captured in paper

Overflight Selection Requirements
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• Vehicle Health & Safety / Mission Robustness
• Schedule “Critical pass” downlinks after critical rover activities
• Maintain orbiter diversity

• Anomaly Recovery
• Consider MSL Safe Mode windows

• Mission Efficiency/Return
• Optimize decisional pass selection
• Maximize total data return

• Special Cases
• Allow customized scheduling for demo purposes, etc.

Overflight Selection Requirements
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1. Critical Pass Selection
o >50Mbit, >2pm LMST
o Earliest Earth Receive Time (ERT) (±2 

hours)

2. Decisional Pass Selection
o Prioritize selection based on key 

metrics using decisional “filter table”

3. Remaining Pass Selection
o Maximize total data return
o Consider MSL Safe Mode windows
o Maintain orbiter diversity

Overflight Selection Approach
Priority >= LMST >= DV (Mb) Tactical Shift Start 

(hours from 08:00PT) Tiebreaker

*Approach and values have matured since paper
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1. Critical Pass Selection
o >50Mbit, >2pm LMST
o Earliest Earth Receive Time (ERT) (±2 

hours)

2. Decisional Pass Selection
o Prioritize selection based on key 

metrics using decisional “filter table”

3. Remaining Pass Selection
o Maximize total data return
o Consider MSL Safe Mode windows
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Priority >= LMST >= DV (Mb) Tactical Shift Start 

(hours from 08:00PT) Tiebreaker

1 16:00 250 1.5 Orbiter

*Approach and values have matured since paper
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1. Critical Pass Selection
o >50Mbit, >2pm LMST
o Earliest Earth Receive Time (ERT) (±2 

hours)

2. Decisional Pass Selection
o Prioritize selection based on key 

metrics using decisional “filter table”

3. Remaining Pass Selection
o Maximize total data return
o Consider MSL Safe Mode windows
o Maintain orbiter diversity

Overflight Selection Approach
Priority >= LMST >= DV (Mb) Tactical Shift Start 

(hours from 08:00PT) Tiebreaker

1 16:00 250 1.5 Orbiter

2 16:00 120 1.5 Data Volume

*Approach and values have matured since paper
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1. Critical Pass Selection
o >50Mbit, >2pm LMST
o Earliest Earth Receive Time (ERT) (±2 

hours)

2. Decisional Pass Selection
o Prioritize selection based on key 

metrics using decisional “filter table”

3. Remaining Pass Selection
o Maximize total data return
o Consider MSL Safe Mode windows
o Maintain orbiter diversity

Overflight Selection Approach
Priority >= LMST >= DV (Mb) Tactical Shift Start 

(hours from 08:00PT) Tiebreaker

1 16:00 250 1.5 Orbiter

2 16:00 120 1.5 Data Volume

3 15:15 250 1.5 Orbiter

*Approach and values have matured since paper
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1. Critical Pass Selection
o >50Mbit, >2pm LMST
o Earliest Earth Receive Time (ERT) (±2 

hours)

2. Decisional Pass Selection
o Prioritize selection based on key 

metrics using decisional “filter table”

3. Remaining Pass Selection
o Maximize total data return
o Consider MSL Safe Mode windows
o Maintain orbiter diversity

Overflight Selection Approach
Priority >= LMST >= DV (Mb) Tactical Shift Start 

(hours from 08:00PT) Tiebreaker

1 16:00 250 1.5 Orbiter

2 16:00 120 1.5 Data Volume

3 15:15 250 1.5 Orbiter

4 15:15 120 1.5 Data Volume

5 16:00 80 1.5 Data Volume

6 15:15 80 1.5 Data Volume

7 14:30 80 1.5 Data Volume

8 16:00 50 1.5 Data Volume

9 15:15 50 1.5 Data Volume

10 14:30 50 1.5 Data Volume

11 14:30 80 3.5 Shift Start

12 14:30 50 3.5 Shift Start

13 12:30 80 3.5 CSP

14 12:30 25 3.5 CSP

*Approach and values have matured since paper
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• Overall data return increase

Impacts of Relay Planning Redesign

17



• Automation of overflight selection process; removes the “human in the loop”
• Preserves (and enhances) mission efficiency with increasing problem scope

• Well-defined rules to prioritize overflights based on key metrics of interest and 
competing constraints
• Metrics: data return, latency, overflight timing
• Constraints: InSight coordination, non-sun-synchronous orbiters, MAVEN orbit, human factors

• Transparent selection criteria which can be easily adapted per evolving mission 
requirements and desires

• Groundwork for a mission-independent, unified overflight selection framework
• Could enable federated processes to be combined into a single architecture

• “Smart” relay planning using modern systems engineering principles

Impacts of Relay Planning Redesign
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• InSight’s landing at Mars in 2018 necessitated a redesign of MSL relay planning to not 
only adapt to fewer relay opportunities, but also to integrate MAVEN and TGO orbiters  
into nominal relay operations

• In doing so, MSL laid out the requirements necessary for preserving mission return and 
robustness

• MSL is maintaining historical operations efficiency despite sharing relay opportunities 
with InSight as well as:
• Shift from simple and predictable relay planning to less consistent planning start times due to non-

sun-synchronous orbiters
• New non-sun-synchronous orbiters create complexities in operations but improve overall 

operations efficiency and increase data return
• Constraints, challenges, and solutions captured could inform design and foundation of 

future relay networks at other planetary bodies

Summary
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Mars Relay Planning Overview
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